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ABSTRACT

This report presents a review of a video moving target indication (VMapae
bility implemented in the Analysts’ Detection Support System (ADSS). The VMTI
subsystem has been devised for video from moving sensors, in pattibutanot
exclusively, airborne urban surveillance video. The paradigm of thérmgsensor,
which is a typical scenario in defence applicatioegy( UAV surveillance video),
poses some unique problems as compared to the stationary sensor. @angolu
these problems draws on a number of algorithms from the computer vision commu-
nity, and combines them in a novel system. It will provide positional and sfpe-in
mation for any moving targets in a given video sequence, on a frame by frasie
Moreover, given suitable parallel non-specialised hardware, therayallows a near
real time solution to VMTI in ADSS.
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Video Moving Target Indication in the Analysts’ Detection Support
System

EXECUTIVE SUMMARY

This report presents a review of the video moving target indication (VMuihsystem cur-
rently implemented within the Analysts’ Detection Support System (ADSS). Th@3\was orig-
inally developed to assist in the exploitation of synthetic aperture radar X 8A&yery, but de-
velopments over the past several years have facilitated effectivegsiog of streaming video
data. New algorithms have been incorporated to support urban surgeifeom airborne and
ground-based platforms, in particular VMTI. VMTI for a static cameralbean well researched
and reported in the literature over the past decade, and there are armdmkeellent COTS prod-
ucts available to detect and analyse motion in video from static cameeggdhe products offered
by the Australian compani&3arity Visual IntelligenceandSentient Softwaje VMTI for moving
cameras however is considerably less mature. We saw this technologg gapoaportunity to
develop our own video processing algorithms within ADSS, for important agipics such as
VMTI for Unmanned Aerial Vehicle (UAV) surveillance.

The paradigm of the moving sensor poses some unique problems as conogheestationary
sensor because, relative to the camera, everything in the scenesajgpeamoving. The motion
of the actual targets must then be distinguished from the global motion in the.g0@r solution
draws on a number of algorithms from the computer vision community, and cositiiam in a
novel system. In particular, we leverage existing algorithm developmeihzawe in shape from
motion, e.g, feature tracking and outlier removal, and combine it with established worthéo
static camera scenarie,g, background modelling and frame differencing. The solution provides
positional and size information for any moving targets in a given video segu®n a frame by
frame basis. Moreover, given suitable parallel non-specialised laaedthe system allows a near
real-time solution to VMTI. A VMTI system needs to run at a near real-time rateetof any
operational value in the field; we are not aware of any existing real-time My§tem matching
our performance capabilities. We compare two other VMTI systems with oudspeovide a
comparative analysis.

The technique reported here won the “Best Paper” award when itneasited in a shortened
form at the recent Digital Image Computing: Techniques & Applications €mmice in Cairns,
December 2005.
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1 Introduction

Video surveillance is an essential and commonly used mechanism for prgteitéihinfras-
tructure and improving situational awareness. However, manual explaoit#tgurveillance video
can be such an intensive activity that often its only practical role is eitharasible deterrent
or for post-mortem analysis following a particular event. Such utility is ur@tedde when the
event requires interdiction before there is loss of life or infrastructlife instigation of a real-
time response can be facilitated by using an active video surveillanceambprehere automatic
processing of multiple video streams draws the attention of analysts to susyacittity, leaving
the vast majority of benign imagery to pass unchecked by the human analyst.

This report presents a review of the video moving target indication (VMuihsystem cur-
rently implemented within the Analyst's Detection Support System (ADSS). T8\is a flexi-
ble processing engine developed to assist the imagery analyst to dajetd tamall-source surveil-
lance imagery. It provides the means of structuring a hierarchy of algwsitthich, when applied
to the data, makes progressively refined decisions on the locations efstarjhe ADSS was
originally developed to assist in the exploitation of synthetic aperture r&keiR) imagery [46],
but recent infrastructure developments have facilitated effectiveepsiig of streaming video
data and new algorithms have been incorporated to support urbarllancefrom airborne and
ground-based platforms.

VMTI for a static camera (also known as motion segmentation) has been sedirolhed and
reported in the literature, and there are a number of excellent commeimikigis available to de-
tect and analyse motion in video from static cameeag, (the products offered by the Australian
companielarity Visual Intelligenceand Sentient Softwaje The standard approach adopted is
to compare the current frame with a suitable background model constriuctadhe previous
set of frames in the sequence [26]. A significant difference indicatdsage in the scene has
occurred, from which it can be inferred that there is motion in the scehe. motion can then
be tracked through the subsequent frames using a tracking algorithhoiokce.g, particle fil-
ters [48] or simple heuristical methods based on shape characteristi¢cerapdral integration
(reported herein). The background model is continually updated withutinert frame, excluding
those pixels in the frame deemed to be part of moving targets.

In the case of a moving camera however, the situation is significantly more cobggause,
relative to the camera, everything in the scene appears to be moving. The robtie actual
targets must then be distinguished from the global motion in the scene. Thiempraan be
addressed using one of a number of approachgs,background model based, correspondence
based and optic flow based [31]; see also [11], [25] and [29] foeradipproaches to the problem.
We have explored and implemented all of these approaches in ADSS, érothevapproach we
report herein is based on background modelling. We have found thaaghi®ach is robust to
sensor noise and typically yields complete, high quality object segmentationzolér, it pro-
vides persistent target detection should the object stop moving momentaigdyinTarn provides
a high quality input to the tracking phase.

This report will proceed as follows. In the following section, we providdiscussion and
background theory of VMTI for the moving sensor scenario. In aagbent report, we will de-
scribe the VMTI subsystem as it is implemented in ADSS, and provide detailseandtvidual
modules that make up the subsystem. Section 3 provides some results freivi duwork, illus-
trating some of the issues that arise for the moving sensor scenario. tlarSécwe present the
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results of a comparative analysis between the VMTI subsystem we hee®ded and two other
VMTI systems available: ARIA, a VMTI approach developed by Cagdiit] and implemented in
the MATLAB programming language, and a COTS product developed #uatralian software
company. Finally, we conclude with some remarks in Section 5.

2 Moving Target Indication

2.1 Related Work

The automated detection and tracking of moving targets using video techrsifogied on an
airborne platform has received comparatively little attention, mainly due to tieofaavailable
imagery and the sensitivity of defence research.

Much of the earlier work focused on FLIR (forward looking infrarensors but many of
the approaches were later applied in the visible band. The FLIR fratereligvb they have
the more difficult problem: low signal-to-noise, non-repeatability of targgiature, competing
background clutter, lack ad priori information, high ego motion, and weather induced artifacts
[62] .

Strehl and Aggarwal’s [56] approach is based on the subtractiomgsteeed frames followed
by blob extraction and association etc. The frame-to-frame mapping resintmgego-motion is
modelled as affine, and determined by registering the frames using robltstcaia matching of
the entire frames i.e. it is not feature based. The affine model is unablptiredhe skew, pan
and tilt of the planar scene.

Shekarforoush and Challappa [53] combine sensor stabilisation anttidetato a single
stage, however, by essentially using the targets as feature points istratgn, the process is
dependent on persistent, high contrast targets and a relatively betégtlyed background.

Some other authors made assumptions about the target characteristi¢cibompiaotion that
weakened their proposals. For example, Braga-Neto and GoutsiawH8]used morphological
operators) assume that target sizes remain constant over time, that i@y lagh contrast with
their surroundings, and that ego-motion is small. Dagies. [20] proposed a Kalman filter-based
target tracker but made strong assumptions about target motion and assuego-motion.

In the visible band, the approach adopted by Yilneaal. [62] is relatively unconstrained:
it accommodates high global motion; changes in target signature, and thestaggd not move
with constant velocity or acceleration. Significant (global) ego-motion islleainusing the multi-
resolution framework proposed by Irani and Anandan [32] if wetedn Targets are detected
using an image filtering and segmentation scheme. The target distributionsmradidelled, and
the motion between this and the subsequent frame is determined by findingrnlaticen vec-
tor in image space that minimises the probabilistic distance between model andatandhis,
mean-shift, approach was originally proposed by Comargtal. [17] and has been used widely,
particularly in ground-based surveillance applications when targetsrgeedad have inconstant
signatures. Mean shift tracking was used by Ali and Shah [1] for ingckehicles in airborne
(visible) video. The authors claim good performance when trackingtsalgeger than 100 pixels
in area, and we suggest that it is the mean-shift tracker part of thaégmythat is responsible
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for this soft constraint. Ali and Shah remove ego motion using a featadiegt descent hy-
brid registration scheme, the aim being to exploit the robustness of fdzdsesl methods and the
accuracy of gradient descent approaches. Moving targets aratbtsyy accumulation of differ-
ences between a frame andsiteeighbours, followed by histogramming of the logs. Large peaks
correspond to background while smaller peaks are targets. Here tdarglets must be large to
be sure of detecting a corresponding peak in the histogram. Targetsiagioe is achieved using
level sets [63, 65].

Cheng and Butler [13] (Sarnoff Corporation) describe a video setatien algorithm based
on combining three outputs: a moving object detector / segmenter (baseitkgraund mod-
elling), an unsupervised segmenter (based on local image propentids) saipervised segmenter
(trained to distinguish between object classes, such as vehicle, tress)hdine three are com-
bined based on their semantic meaning e.g. a vehicle can move, a house canno

Cohen and Medioni’s initial strategy [14] was to register consecutivadsaby minimising
the least squares criterion subject to an affine transformation modeh{tovesego-motion), fol-
lowed by the detection of moving objects by detecting anomalies in the normal cemipaf the
residual flow. Later, stabilisation became based on feature trackingr dtection, the objects
were tracked using a dynamic template, and trajectories extracted usinghasg@ching algo-
rithm [15]. In a subsequent publication, Cohen and Medioni emphasigednification of the
stabilisation and detection stages [16], and Bremond and Medioni [7fidesm adjunct to the
Cohen and Medioni system for recognising behavioural scenar@e@on the use of Petri Nets).

Daleet al.[18] describe a number of video exploitation algorithms that have been imptechen
on the ADEPT hardware. They parameterise the global motion field by arglarspective model,
which is capable of capturing translation, rotation, scale, shear anggutix® projection. It is
derived by tracking salient (i.e. strong, persistent and consistentjrésa Thus, the tracking
achieves a level of robustness though not necessarily by adoptintstics#ly rigorous approach
such as RANSAC. Scene content determines the complexity of the globaladaptively), that
is, from translation through to perspective projection. The targets aeetdd by image subtrac-
tion and, as such, the resulting segmentations are of poor quality and tufra tieat is difficult to
predict.

Removal of ego motion by global registration is an often used first stageetdey moving
targets. The aim is normally to register corresponding ground featur@seVer, in addition to
global motion, camera motion produces parallax artifacts, that is, the @poeanf independent
motion in objects that are fixed but elevated in comparison with the groundihasd can be
indistinguishable from moving targets. In an attempt to identify some of thesacstifyalcinet
al. [60] describe a flow-based approach which partitions a frame intorfoneg and background
occlusion layers using an EM-based motion segmentation. Dong and Ji2&poré¢fer to remove
parallax artifacts and propose a morphological procedure to do sobRefi@oreferencing is also
becoming increasingly practical through calibrated camera kinematics aniipn registration
of video frames to reference imagery [59]. Planar-plus-parallax usera sophisticated model
of image motion which can capture the dominant planar motion as well as lineswaloclg the
residual parallex motion is expected [50]. Burns [9] examines technloased on georeferenced
object motion relative to the trajectory of the camera, as well as a new methlagsifging objects
and events using features extracted from georeferenced trajectories

The reader can see that this airborne surveillance problem has dbsémtiee stages: stabil-
isation (or registration [35]) , detect and track. Each stage has mamgtiabtgpes of solution,
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the selection of which will be influenced by overall tracking performarsecution time, and
robustness to unfavourable scene content or sensing conditionsndnad it is difficult to draw

hard and fast rules regarding the suitability of one class of componenritalg over that of an-

other, but in building a system we aim to develop components which complemetnmther, in

particular, early modules should produce outputs with characteristics quality that suits later

modules, and that later modules are robust in any shortcoming in the forraeals@/look to rely

on a small number of parameters, and that those that are necassddytshauia sound statistical
basis and have meaning to the human operator.

This report describes the development of our system, different elermedtslants on which
have been published widely [47, 36, 6]. The tracking element will be thigsuof a future report
but the reader is referred to Joretsal. [36] for the application of a particle filter, and the more
recent application of a Probabilistic Multi-Hypothesis Tracker (PMHT) isctibed by Davey
[19].

2.2 QOverview

The VMTI system is based on the assumption that pixels which compose a nulvjiect
will usually manifest themselves as statistical outliers from a model of the sdeick has been
constructed over an extended period of time. The basic strategy whéngdeéh a moving
camera is to apply a video registration process to each frame in the sedqoeac®ve the effects
of the camera motion, thus allowing background modelling and outlier identificeamiques
to be applied.

When constructing a background model from a video sequence, an imipootéon is that of
the temporal window used, or the set of frames from which the backdrowel is constructed.
For a static camera, this is usually the entire set of image frames that havadoggred up to the
current point in time (though the model is likely to adapt over time). When the rmaimenoving
however, the length of the temporal window is determined by the followingideretions:

e It should be sufficiently short that all frames within the temporal windowlapespatially
by a significant amount.

¢ It should be sufficiently short that image differences introduced by@bsin viewing ge-
ometry as the camera moves through the scene are acceptable for comgstrbbackground
model. These differences generally increase with distance betweenacpositions, and
cannot be entirely removed by a registration process based on a simpieepécaegistra-
tion model such as a global affine or projective transform.

¢ It should be of long enough duration to avoid a contribution to the backgrowdel being
made by moving targets, at least to the extent that they do not impact on defeetfor-
mance.

These competing considerations relate directly to the speed of the sensanxiisity to the scene
and the size and speed of the targets in the scene. A suitable choice foraemipoow length

is therefore dependent on the type of imagery at hand. We have fouwodif applications that a
length of100 frames often yields an acceptable background model while minimising thaseffec
of perspective errors (based on standard definition video with 24 @eresecond).
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N frames

Figure 1. The video sequence is divided into blocks each witframes. VMTI is carried out
within each block separately, independently of other blocks.

Given the notion of a limited temporal window, our approach is then to divideithen se-
qguence into blocks oW frames, wheréV is the length of the temporal window, as shown in Fig. 1.
VMTI is carried out in each block separately: theframes in the block are registered to the cen-
tral frame in the block; a background model is formed from the stadk ofgistered frames; and
frame differencing within the block carried out for each frame to prodhee/MTI results. The
key observation in the approach is that a valid background model camrbed from any contigu-
ous set of frames aroun and not necessarily the frames directly previoug tn the sequence.
Each framef in the block may therefore be compared to a background model constifoated
the N frames within that block. This approach allows for the efficient and contipatly simple
algorithm of division into blocks as shown in Fig. 1.

It is important to note that the approach also allows a parallel implementation dfl Vg
the independent processing of blocks can be carried out on sepevagssors. The VMTI results
may then be recombined seamlessly into a continuous sequence. We maytbigiladt to devise
a near real-time solution to VMTI on relatively cheap non-specialised raelwThe parallel
implementation does however entail an inherent lag: Assuming sufficiecegsors for real time
processing, the lag i® x N frames, whereP is the number of processors. Further details on
performance of the algorithm are given in a comparative analysis in Section 4

2.3 The Registration Process

The ADSS includes a humber of well known image registration techniquesdbét be ap-
plied to video data, including wavelets [42] and optical flow [31]. In thisli@ation, the favoured
registration algorithms are the hierarchical, region based (or more gdyeicsge based) correla-
tion technique [45], and more so, the feature-based technique dekbglmav.

We report here our method of video registration based on a featurenaalgorithm of
Kanade, Lucas and Tomasi [54], known as “KLT”, which has shoansistently good results
over a wide range of video imagery. It is a mature feature tracking methot thvell established
in the computer vision community for tracking features in video sequencethdopurpose of
determining structure from motion [28]. In the KLT algorithm, small featureshsas corner
points are extracted and tracked based on a “corneredness” meadesired from the eigenvalues
of the autocorrelation of the image intensities within a window, and the use ofsandarity
measure to determine the affine transformation. For our purposes, tkedrf@atures are simply
used as control points to which a frame-to-frame parametric registrationl nsofitted (either
affine or projective) and used to warp each frame to the common framéeoémee. From here
background modelling and frame differencing can be applied to yield therlatgjects that we
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wish to segment and track,g, people, cars and other objects. This was a good opportunity to
leverage an existing technology implemented in ADSS for shape from motioutilising the
modular design and framework of the ADSS architecture.

The registration process may be formalised as follows: given a settafégaointsP in frame
F that have been tracked and correspond to a second set of Pointsome other fram&"’, they
may be related using via the matrix equatiBh= PA. Here A is 3 x 3 matrix capturing the
parameters of either an affine or projective transform, Brahd P’ are matrices of points stored
in rows as parametric triplet$z, y, 1). The equation can be solved fé using a simple least
squares fit to obtain the best fit solution for either the affine or projectise. We may also obtain
a measure of the reprojection error, or the degree to wAidits the datd® andP’, by computing
the average difference:

N
1
Ac =D [P = (PA), )
i=1

wherei is an index into theV points of the point setP’ andPA.

The matrixA is used as a model of the mapping function relating the imRgesdF’, denoted
herein by the relatio®’ = FA. In practice however, the registration of imaBéto the domain
of F can then be done in either the forward or backward direction. In theafordirection, each
pixel in F’ is directly transformed to the domain Bfusing the estimated mapping functioh,
However, due to rounding and discretisation errors, this can lead todnadiésr overlapping pixel
values. For this reason, the backward direction is usually preferktsdhe method we adopt in
our work. In this case, the inverse transfoAm! is computed and each coordinateFliis mapped
to the domain off”, from which a pixel value is computed frolY by interpolation. There are
various options for interpolation method, such as nearest neighbouedsiliquadratic and least
squares; we prefer bilinear interpolation because it is simple, efficientialis acceptable results.

Figure 2 shows an example taken from a scene of urban surveillance.twbhframes at
the top of the figure are 50 frames apart, with feature points superimposeutan The frame
at the bottom of the figure is the registered version of the top frame in theseguusing an
affine registration model. The KLT algorithm has been applied to the sequerokingN = 200
features. Features that are lost are immediately replaced by new festuttest the maximum
number of features is represented in any given frame. Itis not alp@sgble to find the maximum
N features however, in particular in cases for largend/or frames with relatively few features.
The number of feature correspondences between any two givensfigenerally falls well short
of IV, as points are continually lost as the distance between flaared frameF’ increases.

2.3.1 The Kanade, Lucas and Tomasi (KLT) Algorithm

For the KLT algorithm, we use an implementation written by Birchfield [4] that weeha
modified slightly to improve its’ speed. The algorithm as implemented works as fllow

The central idea behind the KLT algorithm is to track features acrosessige frames of the
video sequence. The features themselves are defined in a manner thasésctheir likelihood
of being tracked across the frames — hence the theme of “good featuraskbin the titles of
published papers in the area. Candidate features are computed frametiesss of the eigenvalues
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Figure 2: Feature tracking for video registration. Top and middle: two frames from ¢logience.
Bottom: Top frame registered to the middle frame using affine model fitting teattleed features.
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A1, Ao of the matrix of gradients at each pixelof a frame,

() (%) gy(x)
5= (5o ) @

whereg,(x), g,(x) is the image derivative at a pixal in the = and y direction, respectively.
The matrixZ is intimately related to the equation solved during the tracking across frames as w
will see in a moment. The pixels in the first frame are ranked in descendieg ofdhe smaller
eigenvalue for each pixetnin(\;(x), A2(x)), and the top/V pixels in the list are selected as
features for tracking. The list is winnowed before the selection ocautbat the feature points
are not too closely spaced. A simple but significant speedup is obtainedti¢warly small
eigenvalues are dropped from the sort.

Once the feature points have been selected, the next step is to determinediin in
subsequent frames. This is done by firstly modelling the transformation betesch frame as a
displacement, where the dissimilarity between two windows is expressed]as [54

e= Y (Fopi(x+d) — Fu(x))? dx (3)
xeW

whereW represents a window around the pixeWwith value F,,(x) in the n-th imageF,, which
moves to the positios + d in then + 1-th imageF',,; in the sequence. Then the location of a
particular feature in the next frame can be found by minimising the dissimilarityurne&3).

By taking a Taylor series expansion of (3) about the péint; (x) truncated to the linear term
and using vectorisation operators and Kronecker products for thkingsequations [54], (3) can
be approximated as

Td=e, 4)

where

T=)> Z(x)

xeW

e= 3" (Fux) - Fn+1<x+d>>< <X>>

xeW 9y <X)

andd,, d, are the displacements in theandy directions, respectively. To find the displacement
for each feature, we repeatedly solve (4) domwith the starting assumption that the displacement
of the feature between images is zero, until the change in displacemenofr@mteration to the
next is small. If the iteration limit is exceeded, or the determinariTag too small, then the
feature is deemed to be lost and is dropped.

After the translation for each feature has been found, a consisterck om the feature is
undertaken by transforming back to the very first frame in which it wasctideand if it has now
become too dissimilar (via (3)) it is deemed to lost. We found that a simple transfatidal was



DSTO-RR-0306

sufficient for our purposes, although an affine consistency chealsdscatered for in the code
by Birchfield [4]. Note that bilinear interpolation is used to resample the imagascimmmodate
sub-pixel translations. The implementation employs a multi-resolution appro#oh ti@acking to
provide good initial conditions for the displacement at the higher resolutions.

When the number of features has fallen below a threshold, a process igdhttiat adds new
features to the existing ones that have been successfully tracked.

2.3.2 The Iterative Registration Strategy

An important issue to be considered in the registration process is the cothpoum that
occurs when sequentially registering frames in a video sequence. &ompéx the following
‘cascaded’ registration strategy could be used to register a sequenNcEamesF;:

Fs =FiA1»

F3=FoAs3=F1A12A03,...,

Fy =Fny_1Anv_1nvn=F1A12A23.. . Ay_1 N ©))

HereA, ;11 is the transformatione(g, affine or projective) required to register frafigto frame
F,.,. For a sequence a¥ frames then, registering fran¥®, to frameF y requires a cascade of
N — 1 separate transform&; ;1,7 = 1... N — 1. Each of these transforms will involve some
error in calculation, and cascaded them will produce a compoundedtieatacan rapidly become
unacceptable for the purposes of VMTI.

For example, Fig. 3a shows a plot of the reprojection expfdefined in Eq. 1) versus frame
number for a simulated data set. Here the data set consist&@eandom(x,y) coordinates
with valuesz,y € [1,50]. An arbitrary affine transform was specified and applied iteratively
to the data set00 times to simulate a fixed camera motion fidi0 frames. Gaussian noise of
mean zero and variance one was then added to the data set to simulaterthefeatnire position
measurement. As can be seen from the figure, the registration erroasasralmost linearly
with frame, until eventually it is almost ten pixels. The registration process iBystage will
produce frame registrations with an unacceptably high degree of emowndl be unsuitable for
the purposes of background modelling.

Using the method of feature tracking however, there is a simple way to significaitigate
the effects of compound error, because we do not need to rely orcadeasf affine transforms.
If we consider again registering a sequenceVoframeskF;, if we have successfully tracked all
points through thév frames then we can apply the following ‘non-cascaded’ registration gyrate

Fo=FiA»

F3=FyAz3=F1A3,...,

Fy =Fn_1An_invn =FiAin
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(€) (d)

Figure 3. (a) Reprojection error versus frame number of a simulated data sety astascaded’
registration strategy. (b) Using a ‘non-cascaded’ registration stratégy Feature points are lost
as the frame increases. (d) Feature points are restored when the mndatlsebelow a certain

cutoff.

10
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The idea here is that to register frarhe to Fy we may replace the cascade 8f— 1 affine
transforms with the single transfor; , estimated directly from the point seBs; and Py
via the known point correspondences. Using the simulated data desalibed, the error as the
number of frames also increases in a linear fashion, but its rate of grogitmigicantly reduced,
as shown in Fig. 3b. This small increase in error per frame is due to théirauarror generated
when iteratively applying the specified affine transform.

This ‘non-cascaded’ strategy however relies on the fact that all opdires have been suc-
cessfully tracked throughout the frame sequence, which is usually eatase (for example, a
proportion of the tracked points will leave the field of view as the camera) pitwe realistically
then, there is a point attrition that occurs during tracking that may be as higleav per cent per
frame. As the number of successfully tracked points declines througtetheisce, the error in
the registration model increases and eventually overtakes the errordblat have occurred had
the ‘cascaded’ registration strategy in Eq. (5) been used. A plot of thos is shown in Fig. 3c
using the above simulation data. Here, the point attrition rate was set to two pattisframe
(i.e.one percent).

In summary, in order to minimise cascaded registration error, a ‘non-@adcstrategy can
be used while there are sufficient tracked points to produce a good fietdata. When there
are insufficient successfully tracked points however, it is best tortabi registration process
using a fresh set of feature points. In our implementation, we determine wwhdmthis using a
simple user defined cutoff value specifying a minimum acceptable numbeatafégoints. Such
a strategy results in the following formulation for the registration of frdfe

Fy =F1A1 Ak k- Ak N1

Here, framek; designates a frame where the number of feature points successfullgdriek
below the specified level, and the tracking process was reset. It théimwech to framek;, 1,
where again the tracking process was required to be regeBased on the above simulations,
Fig. 3d shows a result using the combined ‘non-cascaded’ strategy anthdr resetting of the
registration process. Here the cutoff value was sé0tpoints.

2.3.3 Removing Ouitliers from the Set of Feature Points

In the feature tracking method, it is important to identify feature points thaespond to
moving targets and remove them from consideration in the model fitting stagemakes the ap-
proach more robust when, for example, there are large moving objecs stéme or when there
is a significant amount of noise. On the other hand, failure to remove outhergesult in rather
poor fitting of the registration models, which underpin the background modealfidgsubsequent
motion extraction stages. The algorithm we use is called “RANSAC” (RANdam@e And
Consensus) [28], which is designed to fit models to data in the presemcsighificant number
of outliers. This algorithm is used widely in the computer vision community, in pdatién the
computation of scene homographies for constructing shape from motienalgbrithm could be
applied to remove unwanted correspondences from other methodssifatign,e.g, optical flow
vectors or tie-points. We would argue however that area-based mdtiaidgeld tie-points tend
to smooth the motion due to moving targets into the estimates of the positions of tie-(diets.
RANSAC algorithm can be summarised as follows:

11
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Objective

Robust fit of a model to a data set of feature correspondefitiest contains outliers

Algorithm

e Randomly select a sample edata points froms and instantiate the model (in our case, a
parametric affine or projective transform) from this subset

e Determine the set of data points which are within a distance threshaoldf the model.
The S; is the consensus set of the sample and defines the inliéfs of

¢ If the size ofS; (the number of inliers) is greater than some thresiglde-estimate the
model using all the points if; and terminate

e If the size of§S; is less tharf’, select a new subset and repeat the above

e After N trials the largest consensus sgtis selected, and the model is re-estimated using
all the points in the subsé&;

The feature sef is the set of feature correspondences between a given pair of friantlee
sequence. We have found that in order to distinguish between backbroation, foreground
motion and the measurement error inherent in feature location, this paamoé$ should be sepa-
rated by at least 10 frames. Other values typical of our implementationare< 10, T > 50%
of the number of matches, aid ~ 2000 iterations.

An example is shown in Fig. 4, where a frame from a video sequence teikenaf ground-
based handheld HDTV camera is illustrated (a subset of the frame is stewesfohn clarity). The
KLT algorithm has been applied to track 500 features through the consrsemuence, which was
subject to unconstrained camera motion and zooming. The white crossles anéers determined
by the RANSAC algorithm and are used to estimate the registration model anthtfechosses
are outliers and are ignored. The feature points tracked on moving targateemed to be outliers
and a number of points in the background of the image have been classiftedliars as well.
This occurs because we have set the distance thresholthe algorithm quite low so as to be
sure to remove all the feature points that correspond to moving targetsisi\ieeguire the point
to be tracked through a certain number of frameg,(10) in order to provide a sufficiently wide
baseline to distinguish between background motion, foreground motion eantktasurement error
inherent in feature location. Those points with insufficient track lengtraks® deemed outliers.
Generally there are ample inlier points remaining to fit a good registration model.

2.3.4 Error Correction

By analysing the reprojection error of the registration model, it is possibletermine au-
tomatically when the registration process has failed and to implement a resivatggy. This
is particularly important when generating mosaics of video imagery, as tloeggaelies on an
accurate registration through the entire video sequence. Figure 5 slumkwise from top left a
set of three consecutive frames from a video sequence of Mallalav@giée South Australia. A
mosaic of this scene is required but, as can be seen by the sudden jumprbdte/second (top

12
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Figure 4. Removing outliers from the feature set. White crosses indicate inliers useddge im
registration and black crosses indicate outliers.

right) and third (bottom right) frames, the signal received at the grotattbs has momentarily
dropped out. Typically, off-the-shelf mosaicing packages will breakrdim such cases because
they require smooth continuity through the sequence of frames. Thedgaiints that have been
tracked have also been lost over this region and therefore our estinfidbesregistration model
will be inaccurate. This is directly reflected in the reprojection error, figelkin Eq.(1): The
bottom left of the figure shows a plot of this error and reveals a praremlimcrease in error when
there is a loss of signal. It is a simple matter to implement a threshold (at, say,eaofcd)i to
automatically determine when such errors occur.

We have subsequently implemented a simple error recovery strategy thainitith @lock of
corrupted frames from the video sequence and register the two fraragseatend of the block,
to form a continuous mosaic. The process takes the point sets from thedmmes and tries
to find the optimal translation between the two disparate point sets with priori correspon-
dence information, using a brute force search of ofdér The essential idea of the algorithm is
to use a pattern matching approach that translates one point set to thelothegh all possible
translations, establishing correspondences through a simple distarsteottrelhe process relies
on at least some spatial overlap between the two points. For point setsatieabhthe order of
hundreds of points, the implementation time of the algorithm is acceptable. Anadiverap-
proach reported in [10] can find the optimal affine transform betweempbtid sets directly, but it
assumes.g, that the point sets overlap spatially (a generalisation of the algorithm is gnge®).

Objective

Find optimal translation between the two point sB{si = 1... N andP;,j =1...M, withno
correspondence information.

13
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Figure 5: Clockwise from top left: Three consecutive frames from a sequence wittodt@nd
other errors in signal transmission. Bottom left: The reprojection erran ba used to automati-
cally predict when registration has failed.

Algorithm
Foralli=1...N,j=1...M

e Form atranslation s&®” = P + t; j, wheret,; ; = P;. - P;

e Determine set of correspondences betwBérandP’: point P!/ corresponds to poirf®/,
if the distance|P, — P || <t

e Record mean distance= + Zle Py, — P, |, whereK is the number of correspon-
dences

The optimalt; ; is the one that gives the lowest mean distasawer alli, j. Given the optimal
translationt; ;, a solution for the parametric transform between the BésndP” may be found
by solvingP’ = P” A using a least squares approach.

The result applied to the example in Fig. 5 is shown in Fig. 6. Here the mosdiebagormed
successfully with no apparent error in the result. We plan to investigate deethdncorporate
available meta data such as geocoding information to improve the mosaic regattitalar, our
collections include highly accurate positional information that describesredoeation and pose
and this information may be incorporated into the solution through the use ofigees such as
bundle adjustment [51].
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Figure 6: Resulting mosaic in region of signal drop out, after error correction hesrbapplied.

2.3.5 Tracking in Relatively Featureless Regions

One of the drawbacks often cited with regard to feature tracking is that gnerglly not
applicable to video of scenes that are featureless. However, we bave find a real example
where this has been the case in our airborne and ground-basedsatesziions (other domains of
imagery might pose a problem however, for example tracking and redogféatures in imagery
of faces, which have large regions of smooth texture). For example, imtiwaced standard
definition frame shown in Figure 7, the subject is a relatively featurelessrderrain but there
is still sufficient features in the scene to find and track over the entireeq@anshown in black
and white at the bottom of the figure, and discussed further below). Hnigkcplar sequence
consisted of 29 non-consecutive frames taken from a moving airbdatferm, where images
could be two to four frames apart. We found that the algorithm trackedrésatinat could shift by
as much as 15 pixels between frames. The camera motion in the sequenadiéstaahe vehicle
motion and there is significant vertical furrowing evident in the imagery. Trhiagery posed
some problems for optic-flow based technigueg, with interlacing there is more “energy” in
the vertical direction and this tends to erroneously weight the registratioe ivetttical direction.

2.3.6 Registration Performance Summary.

We have investigated two registration techniques with regard to VMTI, agierrdbased and
one feature-based. The approach used in the prototype VMTI systdns@me success was
region-based. This hierarchical, correlation-based technique, wiiseal by Privett and Kent
[45]. Our attention has now shifted to the feature-based approactitababove and by Jones
al. [36]. Both algorithms have the capability to model the image-to-image transformaiib a
complexity up to projective.

Moving target detection in video imagery usually operates on two framesategddy a short
time interval, during which the camera motion is relatively uncomplicated; an affineforma-
tion model is usually more than sufficient. Indeed there are strong argumdat®ur of keeping
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Figure 7. Example frame from a sequence that is relatively featureless. Featursbawnen after
classification with the RANSAC algorithm, where black points indicate outliers.

the degrees of freedom low to prevent overfitting, particularly if the s@emtains unevenly dis-
tributed 3-D structure.

Background modelling requires frames to be registered which are segdra longer time
intervals during which time the potential exists for more complex platform andreamaneuvers
to have taken place. This presents several problems. Firstly the frammre fmappings may
need to be more complae. projective. These additional degrees of freedom offer the potential
for overfitting or for misregistration by convergence to a local minima. In a simdéan, the range
of durations between pairs of frames means that, in the case of our fleggea-approach at least,
the optimisation schedule for the algorithm must be comparatively loose so asdmpass the
more highly separated pairs. At best this will impact on execution time, andrat wmay impact
on the precision of the convergence or may cause convergence to ifhf#ausima.

3-D structure presents serious problems. Buildings, although usually eakly textured,
are generally strong exhibitors of the types of features that are oftegraihte the registration fit
metric (i.e. lines and corners).

The region-based approach considers the correlation between thehiobe images. Given
imagery containing a textured ground-plane and some 3D objects it will eee@mpromise regis-
tration (that could be viewed as an average weighted by image local serdemnsity). Our feature
based approach is in some sense more robust. While the proportion oéfeatuanating from the
3-D structure is low, it should have little or no impact. However, because-ihstBucture is high
in strong corners, a comparatively low proportion of the imagery beingilatgd by structures
such as buildings may cause alignment to building roofs rather than thedyqamicularly if the
buildings are of uniform heighite. the relative displacement between corresponding corners is
uniform.

These expectations have been borne out by results. We’'d expeegiba-based approach to
recover from translation of 10-20 % of the image width and 10-20 degifeetation. Performance
is reduced when the images exhibit large perspective variation (chargyeviation angle). The
feature based approach has been applied to a large and varied segefyiraad has performed
well, even when the imagery has exhibited relatively weak and sparselipdistt features. In
the presence of 3-D structure, the region-based approach solutids tierlrift around locally
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from frame to frame, and there is a gradual increase in registration asrthre platform moves
further away from the target image. Under the same conditions, the fdmtseel approach gives
precise alignment of building roofs resulting in more pronounced misretysiraf the ground
plane features.

2.4 Background Modelling

This section considers the construction of a background model using @éimasnalies in indi-
vidual video frames that can be identified. One advantage of this appowacimage differencing
is that, usually, the whole silhouette of the anomalous object is made appaitesit than (pre-
dominantly) changes in occlusion and disocclusiertwo incomplete object segmentations or, in
the extreme cases, two complete segmentations per target (and a resutirigtessproblem).
In addition, the use of a background model means that an object intdueescene (such as a
briefcase) will be persistently visible even if static.

The main considerations with regard to constructing the background mozlethoice of
background function, choice of colour space, the methods useddtstbapping and maintaining
the model, and the decision mechanism for identifying statistical outliers. Theappsopriate
choice depends on the scene content and how it changes over time, irnagdigons,etc.As a
result, many options are available, and ADSS can be configured acglyrdin

2.4.1 Background Functions and Maintenance

Background models are usually constructed from a number of framescalbur distribution
of each pixel over time could be modelled by treating each colour compordagéndently or by
adopting a multivariate route. We consider both. The assumption is that theacenséatic and,
therefore, that over time, a pixel images the same area of the scene dipeaasawve have seen,
some camera maotion can be removed by registration, however, the bacigrmdel should be
capable of capturing lesser movements resulting from camera shake.

The background is a dynamic system, and its model must be regularly retexhgywpdated
accordingly. This is known as background maintenance. The sophisticdtibese update tech-
nigues varies enormously, from straightforward iterative update rulesctmiques that consider
the motion histories of component objects. Depending on the duration of #swalbion, these
updates may need to accommodate gradual illumination chaaggss(in precession during the
day), sudden illumination changes.d, electric light switches and cloud/sun transitions) and the
introduction of shadows cast by objects within and outside the scene. rilisyyalso accom-
modate changes in the stability of the camém §hake) and persistent scene movement such as
moving vegetation. And at some point, it would be desirable that objects irteddo the scene
that present no interest should become part of the background model.

Overview
The Gaussian background model is reasonable for characterisinx¢h&griation in a static

scene, however, the mean and variance will be biased by statistical qutligtgling moving
objects. We characterised the distribution using robust statistiega the median and the median
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absolute deviation from the median, respectively. This provided a moréas&biy model in the
presence of outliers when dealing with small numbers of frames, and inartithe system
can be bootstrapped without a need for the scene to be evacuated ofymbyects. Given the
background modeli(o), outliers can be identified by exceeding some user-specified multiple of
standard deviations from the mean.

A Gaussian model can be made to adapt to slowly changing illumination conditicesir-
sively updating the model using a simple adaptive filter such as (6) ancel@ywbKoller [37]
and others have used Kalman filters for the adaptation. However, in gwgdewonments, windy
conditions may precipitate camera shake and vegetation movement, both ofmédnyctesult in
several object classes being in view over an extended period of timén diahese should be
modelled individually. The most common approach is to employ a mixture of Gaussdel
[26, 27, 24, 39, 41, 40]. Grimsaet al. used between 3 and 5 Gaussian distributions - notionally
one per background class. Similarly, Friedman and Russell [24] usedea®@aussian model (as
have we) to represent road, shadow and vehicle distributions.

The mixture is weighted by the frequency that each Gaussian explains tkgrémawcd. The
mathematical model is given by

{X1, ... Xo} = {I(20,90,7) : 1 <i <t}

k

P(Xy) = Z wi (X, pits Xit),
i=1

wherew; ; are mixture weights, and

T](Xt, M, 2) = %efé(xt*l‘t)qwz_l(xt*m)'
(2m)2 | 2 |2

And we take
Ypt = 0il

for ease and rapidity of inversion. A small offset is added to the varatwerevent division
by zero when no image noise is present. This might result from local imagesan or from
other imaging peculiarities. The mixture of Gaussians can be derived usiBgeectation Max-
imisation (EM) clustering algorithm, variations of which are numerous. In gpeements we
evaluated an unsupervised EM algorithm proposed by Figueiredo and22{ together with a
k-means algorithm [57]. The former selects the number of component distris and does not
require careful initialisation. We have used this approach very suallgdsr partitioning target
segmentations into spatio-colour clusters, however, in this endeavoudathevas sufficiently at
variance with the ideal (due to noise, pixel drop out etc) that the authpmriexced serious reli-
ability issues. At present we favour themeans approach. This is an iterative process based on
the distances of samples to current estimates of cluster centres. Unlike tiaggBithm which
generates overlapping Gaussian distributidgrsieans partitions the samples neatly into nonover-
lapping labelled clusters [11]. This is appealing because it offers soteati to map the cluster
back to the source land-use or object in the scéfieneans requires the desired number of clus-
ters be specified, however, in non-ideal data it is still possible that a plartigixel may exhibit

a lesser number of clusters. This must be recognised in the resulting oefpte n attempt is
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made to detect anomalies. The k-means approach suits a 2D, orthoglonalspace well (Sec-
tion 2.4.2). Inputs to thé-mean clusterer may be standardised to prevent spurious domination of
one channel.

Background maintenance for the Gaussian Mixture model was done usifajlttwing update
rule [55] once the corresponding distribution had been identified

W = (1 — a)wrg—1 + a(Myy),
wherea is the learning rate andi/;, , is 1 for the matched model but otherwise 0, and

e = (1= p)ue—1 + pXs, (6)

o7 = (L= p)oiy + p(Xy — )" (Xy — pue). (7)
And a second learning ratg, is given by

p=an(Xy | pk, ok).

If X; does not belong to any of the K distributions (to within) then a new distribution is created
with a corresponding mean, high variance and low weight.

These approaches can adapt to gradual and more rapid changaddben switches in lighting
changes still present serious problems. Proposed solutions includesdhef hidden Markov
models. These have been used to model three state environments: daggsackground and
shadow [49]. Edge features have also been used to model backgiéin 34] in an effort to
achieve illumination invariance.

An Airborne Focus

In the case of an airborne moving camera however, the extent of the talnwaodow is
restricted and so the contribution made by moving objects to the formation of tkgroand
model is relatively high. Background modelling based on standard Gaustsiistics tends to
include this contribution into the background and thus diminish the effecttgeoRVMTI. We
have found that robust statistics, such as the median filter and maximumtat®hation, yield
superior results and are the preferred method of background modelling aase of the moving
sensor. Figures 9 and 10 (on the following pages) illustrate the benefiirag robust statistics
by the relative impact on background variance caused by a persongribwvough the scene (at
low sampling rate).

More formally, given a stack aV registered imageE;, the background modd@ is given by
B(z,y) = median{F;(z,y), i=1...N}. (8)

An important consideration is that, although the imafgsare registered to one another, they
do not typically fully overlap (in fact they might overlap by as little as fifty part). The total
combined area of the stack of imadésis inevitably larger than that of any single frame. In order
to use as much information as possible to construct the background madi&d, aroid unwanted
boundary artifacts, we endeavour to constidBatver the entire combined area. However, a given
coordinate(z, y) in B may not be contained by al frames, in particular at coordinates on the

19



DSTO-RR-0306

20

Figure 8: Mean background model in red, green, blue colour space.

periphery ofB. For such coordinates, we can only compute the median filter over thasedra
that contain that coordinate. If the number of such frames falls below sooaptmble level, say
five, we do not compute a background model for that coordinate at alheastatistic become
unreliable.

An accepted robust statistic for variance that can be used in conjunctibrthe median
statistic is the median absolute deviation, or MAD, defined by

MAD (z,y) = median{||F;(z,y) — B(z,y)||, i=1...N}, 9)

whereB(z, y) is the background model as defined in Eq. (8). It is usual to make MADBistamt
with a normal distribution by dividing byl)‘l(%), roughly 0.6745 [30]. Again, we can only
compute the MAD over those frames that contain the given coordinate.

2.4.2 Colour Model

All commonly used colour transformations are available in ADSS. In this apggic&GB
was not pursued due to the high degree of correlation between thereesh, gnd blue channels,
and the dominance of intensity (Figure 8). Essentially, the discriminatory faltehthe colour
information is not fully realised, and the intensity and colour components td®assessed
independently.

HSV (Hue, Saturation, Value) does have the desirable property ofaeppintensity from
hue (Figure 11), one benefit of which is the ability to use a simple heuristictinglissh between
object movement and shadow change. However, the continuous, cinailee of the hue feature
results in a discontinuity (seen here in the sky (Figure 11)) which resultsrégian of high
variance when changing scene and imaging conditions are considéyace(FAL.2).

It seems that this characteristic of HSV space is usually ignored by the coitgnaund indeed
this may be reasonable depending on the operations being applied to thalles Bome of our
discomfort with the hue feature was soothed by the following approximatidnshwvere used
successfully in some of our experiments. The angular mean is given by

(% >, cos(6;), % o sin(&i))

(cos(0),sin(0)) = "
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Figure 9: Background variance in red, green, blue colour space.

Figure 10: Robust estimate of variance in red, green blue colour space.

Figure 12: Background variance in HSV (Hue, Saturation, Value) colour space.
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Figure 13: Mean background model in Principal Component Space (PC1, PC3) Rolour
space.

where

2 (Zi COS(9i)>2+ <Z,~ Sin(ei))Q

rT =
n n

and the angular variance is given i — r) [58].

A principal component based feature space has also been consjBayaeck 13) based on
the work of Ohta [43] and Dodd [21]. They noted that images belongingdonamon class,
such as natural outdoor scenes, have very similar principal comporiEmse are obtained by
diagonalising the covariance matrix of the RGB feature vector, and capprexamated by a
single set of transformations that can be applied to any image in the clagsoultdse noted,
however, that as a result of making this generalisation, the transfornmegorents will contain
some correlation.

With regard to the set of outdoor images that we examined, in all daSgss approximately
(3,11, PC, is dominated by eithef—3,0,3)" or (1,0,—3)" , andPC5 by (1,1, —3)".
These findings are in agreement with those of Ohta, who then proceededv® a set of features
f1, f2, andfs for representing colour information.

R+G+ B
fl:f
R—B B—-R

fo= 5 or fo= 5
2G—-—R—-B
f3 = 1

To determine the information held by a particular PC image, it can be replacies foyean,
and the PCA transformation inverted to produce a modified RGB image for ¢cmopavith the
original. Clearly,f; is the same as the Value feature in HSV. The second PCA is a colour feature,
and the third component captures any residual information, that is, leotghirs and some texture.

In his work on segmenting images of natural outdoor scenes, Ohta [A%)ared the per-
formance of his feature set with seven others in common use. He foupditer difference,
and considered it due to the almost 2 dimensional nature of colour informatoimtensity and
one chromatic feature. Land’s psychophysical experiments of thesld@®W similar conclusions
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[38]. He demonstrated that perceptual colour is almost two dimensionashameed that the per-
ception of colour is not purely a local phenomenon but is dependenteosptitial content of the
scene.

Since we regard perceptual colour as being almost two dimensional, intansitg colour
component, we usually consider the third component to be noise and discérdwo dimen-
sional, orthogonal colour space is very appealing both for its ease dpuatation and for the
computational speed that it promotes.

Summary

With regard to the median-MAD background model, much of the airborne imggecessed
to date has been treated as monochrome imagery, that is, it is left as is, ceskaey an intensity
feature has been derived.I = (R+ G+ B)/3. In some instances, the mappgR+0.11G +
0.59B has been used to mimic the response of the human visual system.

ADSS supports most colour spaces in common use. Some of these, printigathsV and
PC spaces, have been applied to ground-based imagery. In theseezde channel has been
treated independently and the results OR'd, that is, if an anomaly is fountiofahe channels
then motion is assumed.

2.5 Anomaly Detection

Given a background model in the form of robust estimates of mean bawkdrB) and its
standard deviation, it is trivial to compute the probability that a particular pgxebnsistent with
the background model (in terms of standard deviations). Outliers can mfiiele using a statisti-
cally meaningful multiplen, of the standard deviation.

Ml(x,y) _ Fl(may) — B(.’L‘,y)

= MAD (z.g)/0 1 (3) ~ " .

HereM,; is a binary motion image corresponding to fraleand(x, y) is the set of coordinates
in frameF;.

As the imageM]; is in the registered frame of referencel®f, it is transformed back to the
frame of reference of the original unregistered video frame correlipg toF;. This is a simple
matter of applying the inverse of the transform that was used to gerféralhe resulting stack
of motion images may then be fed into the tracking st&gg, a particle filter [48] or a simple
heuristic tracking algorithm (such as that described in the following sectiosfould be pointed
out that, because it is based on frame differencing, the motion estinTsfjothoes not produce
strong evidence in favour of a moving target if, by chance, it occupsgs#ar position in colour
space as the background. The result may be incomplete moving objeciecisdbat are missed
altogether. We suggest that using a target/foreground model could ek fragmentation
problem. The impact of registration errors and occlusion changes orathgimund model, and
consequently on detection performance, should also be borne in mind. eAsettsor moves,
regions on the ground occluded by 3D structures will gradually chaRgeimpact is difficult to
predict as it depends on image content. However, relative movement of istiagture (whether
on the ground or elevated from it) will lead to false alarms, and as the grelasiance estimate
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close to a structure is likely to be raised, changes that take place closentoegimn boundaries
are more likely to remain undetected. This places additional heavy constaitite size of the
temporal window.

2.6 Heuristic Tracking Algorithm

As the final part of the VMTI implementation in ADSS, a simple but effectiveristiaal
tracking algorithm was implemented to take the output of the VMTI process amiipe ADSS
detection messages for moving targets. Other tracking algorithms, suchtiateddters and
probabilistic multi-hypothesis tracking (PMHT) are currently under develemt in ADSS and
will be the subject of a future report. The heuristic algorithm works on theept of temporal
integration, or the accumulation of objects in the same location over a period offimdonger
the object is sustained through the time in the VMTI sequence, the more likelysticdes a
true moving target. In contrast, noise in the motion estimatom, caused by flickering light or
changes in perspective, is not typically sustained over a long period oétichean be filtered out
by the temporal integration process.

To begin with, a user specified threshalds applied to the motion estimation in order to
produce binary images which may then be labelled for further analysis,

Mi(x,y) _ Fl(xvy) — B(.T,y)

T MAD () 1(3)

Here the thresholdtypically has a value ranging frothto 3 and essentially specifies the number
of deviations from the expected background value that a pixel musttbdngeconsidered part of a
moving target. The application of a threshold tends to leave only those pd#nis \8MTI imagery
for which there is strong evidence of moving objects. Typically howeveergain amount of
specular noise is also passed by the thresholding process. The siawkgesM; may then be
labelled independently and objects thresholded on the basis of useregbdaifisholds applied
to simple shape attributes such as area and/or size of bounding box. Tdsstéeremove a lot
of small impulse noise, and leaves larger objects caused by changes in itiemjimaovement
of trees etc. The connectivity of an object through time is then establishidrhtively tracking
it through the sequence, using overlapping shape attributes. Moriicght object A in one
frame is deemed to be connected to objBdn the next if its centroid lies within the bounding
box of B. A path length can be assigned to each object, given by the number of fiaatdéscan
be tracked through the sequence. Objects may then be filtered on thefljzetis ngth using a
user specified threshold.

An alternative method to 2D labelling followed by connectivity analysis is to udle3D
labelling of the stack of thresholdesll; images, which automatically establishes connectivity
in the temporal dimension. Temporal integration is then realised as the compwhtiolume
statistics of the binary objects, which may be thresholded leaving only higimeotibjects that
are (typically) moving objects sustained over longer periods of time. Hawineelabelling of 3D
objects is relatively labour intensive and requires significantly more memasources. Moreover,

a 3D labelling algorithm has yet to be implemented in the ADSS.
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3 Examples

In this section, we present some results produced by the VMTI subsystearrange of im-
agery that highlight some of the issues that arise when implementing VMTIrfwwéng sensor.
A relatively straightforward example of VMTI is shown in Fig. 14. At the tofi &f the figure is
an example frame from a video sequence taken from an airborne MX20rséA car is moving
along the road and the camera is following the car through the sequecstdhdard interlaced
video of 24 frames per second, where each frame is of &izex 480 pixels. One of the issues
with using interlaced video is that it can lead to artifacts like those shown in thegiopof the
figure. Here the camera has panned suddenly and this results in a splitthngy sfparate com-
ponents of the interlaced frame. This effect will cause many registratiamitdms to fail. For
example, optical flow based techniques will tend to find more “energy” in éngcal direction
and erroneously weight the registration in the vertical direction. A delatieg algorithm €.g, a
simple sampling in the vertical direction) needs to be employed if such algoritherie Be used
with any reliability. The KLT registration algorithm however was very rolioghis problem and
good registration results were obtained without the application of a de-iciteglalgorithm. As
shown by the result at the bottom left of the figure, the VMTI results feahduames can exhibit
very high noise caused by the apparent difference between the fradrtbe@amodel of the back-
ground. Although erroneous moving targets may well be found in this frémeapplication of
the temporal integration can remove this noise, as shown by the result fénatiis at the bottom
right of the figure.

Another example, using a video from a handheld HDTV camera, is showigirls. The
frame rate for HDTV video is typically 60 frames per second, where eachd is1280 x 720
pixels in size. The camera underwent unconstrained panning and zoomilegf@allowing the
moving subject, as can seen by comparing the two frames at the top of Figdntenstrained
zooming can pose significant problems for registration algorithms that asitige to scaling.
Although our feature tracking method is in fact sensitive to scaling, andriesaare lost during
zooming, they are immediate replaced by new ones. Overall then, the appsaabust to zoom-
ing. The sequence also contains significant movement &gnleaves on the trees and bushes,
occasional cars moving through the scene, workmen in the backgrétimel scene and flickering
sunlight off cars and windscreens. All these examples of motion in theesgere successfully
discounted from the video registration process by applying the RANSA®itig to the feature
points that were tracked, as discussed in Section 2.3.3. This providay aol& background
stabilisation from which reliable VMTI results could be obtained, as showthé&gxamples at the
bottom of the figure. Here the subject has been successfully detecd@ad@sng target, although
the subject is incomplete in parts because there is insufficient discriminativadrethe intensity
of the subject’s clothes and the intensity of the background model thatdesdonstructed. If
it is important to accurately delineate the boundary of the moving object, eefusdgmentation
process, such as a snake or watershed algorithm, could be applied.

The VMTI process extracts all objects in the scene that are deemed to biegmard this
includes objects such as moving leaves on trees and fluctuating light patteicdls are generally
undesired for the purposes of VMTI. In our approach, this appanetion can be removed during
the temporal integration phase. More sophisticated techniques may alsplieel &pdiscount ob-
jects on the basis of their movement pattemg, to remove objects that do not have a consistent
direction of movement. The alternative approach, which has been widehtetifor the case of
the stationary sensor, is to use a background model based on multimodai&adistributions.

25



DSTO-RR-0306

Figure 14: Example VMTI analysis on an interlaced video sequence taken with an b&@éra.
Top left: Sample input frame. Top right: Close up of interlacing striping cdusesudden camera
panning. Bottom left: Output image from VMTI process, showing excassise from interlacing
artifacts. Bottom right: Result after tracking algorithm has been applied; thieenbas been
removed by temporal integration.
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Figure 15: Example VMTI analysis on an non-interlaced video sequence taken wahdhald
HDTV camera. Top: Two sample frames showing unconstrained paanithgooming. Bottom:
Corresponding VMTI imagery showing moving objects.

This has the ability to automatically absorb periodic movement such as moving leasdlick-
ering light into the background model, through the use of its multiple modes, ssuttaimotion
is not exposed in the frame differencing stage. As discussed abowevénvin the case of the
moving camera the extent of the temporal window used is very restrictedoathé sontribution
made by moving objects to the formation of the background model is relativety Bieckground
modelling based on Gaussian statistics tends to average this contribution inexkgedund and
thus severely diminish the effectiveness of VMTI. We have found thatabest statistics we use,
such as the median and MAD statistic, yield superior results. It could alsogbedthat the
classification and discrimination of different types of independent motioreis¢lene might con-
ceptually best be handled separately from the background formatios sthgs allows a deeper
analysis of an object’'s motio®,g, by applying shape statistics and patterns of behaviour rather
than just pixel intensity distributions, and thus potentially more reliable discrimmatio

Another example of VMTI on HDTV data is shown in Fig. 16, illustrating framesrf a
video sequence taken of Parafield airport. The sequence is particcieailgnging due to the
high density of structures which can induce errors in registration and mationation, due to
the change in perspective of the structures as the camera moves threwsgietie. This means
that the temporal window used for VMTI should be relatively short so asitdmise the effects
of change in perspective. On the other hand, there is a wide array ohgiargets in the scene
of different size, ranging from people, cars, trucks and planes.mAsy of these objects are
moving relatively slowly, the temporal window should be relatively long so amitimise the
contribution made by these moving targets to the background model. In this kexdtrip not
possible to select the temporal window size to fully satisfy both constraintsthas leads to
two types of errors appearing in the VMTI results: erroneous movingtamue to perspective
errors and incomplete or missing moving targets due to insufficient baakgrdigscrimination.
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Figure 16: HDTV sequence of Parafield airport, showing four examples of VMslIte See text
for details.

In the top left frame of the figure, three objects have been detected. Gnlkpphmost object
is a true moving target (a person walking across the tarmac); the other weistare caused
by perspective errors. The top right frame again shows moving tattétsime a slow moving
plane has been detected but only its leading edge was found. This issbet@imoving too
slowly for the selected temporal window size, and much of its shape (its wirdyadl portion)
has therefore been partially absorbed into the background model. Tioenbeft frame shows a
similar situation, where this time it is the trailing edge of the plane that has beeneatktalong
with the cab of a moving truck. The final frame at the bottom right shows &vwel\afast moving
van being detected, along with the leading and trailing edges of a slow moving ca

Perhaps one of the most difficult VMTI examples we have encounterdubygrsin Fig. 17.
Here the sequence is from airborne video surveillance taken with an M&2€or. The targets to
be detected from the VMTI process are very small; the aim is to detect téingétsould normally
be overlooked by the analyst. This example was used for the comparnadilysia carried out and
reported on in Section 4. The top frame in the figure shows two such tacgessop roads) circled
in white. The result from the VMTI process is shown in the bottom frame ofithee. Here the
left most target, the dark car travelling down the road has been readilggigh by the VMTI
process. The central targets however are rather poorly resolveteadver, there is a significant
amount of noise in the VMTI results, due to misregistration errors in this clattengironment.
This noise is much more intense in other parts of the sequence, when thexgaansror clouds
move through the sequence. Although these errors are fairly small irttsggeare typically of the
order of the same size as the targets that are sought. Our standartiheadking process, based
on shape analysis and temporal integration, has proven insufficienliablyerack the central
targets in the sequence. However, more sophisticated tracking techridases around Kalman
filtering and currently available from colleagues at DSTO [48], are ablesothe output from
our VMTI process to track the targets through a significant amount oéndi& are currently in
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the process of implementing such algorithms in ADSS, and the augmented eppridicoe the
subject of a future report.

As a final example to illustrate the versatility of our VMTI approach, Fig. 1@sha pair of
satellite images taken of a mining site in Australia at different times of the year.iéatymoblem
faced by the image analyst is to register such images together for the psigfatetecting change
between the imagery. We are able to cast this into a VMTI problem by simplyinigfine pair
of images as two consecutive frames in a video sequence. Our standdidovbcess of feature
detection, outlier removal, image registration and frame differencing may thepjalied as is,
and the results from the VMTI process are the required change deteesiolts (note that in this
case it is not necessary to construct a background model). Thespraaeks very well when
there is sufficient overlap between the images for the KLT feature trdokeack features from
one frame to the next. Typically the displacement between correspondingde must be less
than about 10 pixels. The process will not work well however wheretigesignificant rotation
and/or scaling between the image frames.

4 Comparative Analysis

In this section we present the results of an evaluation carried out betwedrMTI system,
which we will refer to as ADSS VMTI, and two other VMTI systems. The fitbidustry VMTI”,
is the result of a short-term contract of several months duration castietly a software com-
pany for DSTO, to deliver a real time VMTI system based on their existindjécteal property.
This was essentially a no-frills Windows application that demonstrated the cy'agapacity to
implement real-time VMTI. The second, “ARIA" [12], is a VMTI system déweed within the
MATLAB programming environment by Dr. Robert Caprari, ISRD, ovepexiod of approxi-
mately 9 months and completed in March 2004. It currently operates atamately 400 times
slower than real time, and for that reason it is not considered to be a dgiem for deploy-
ment in its current form. It is hoped that in the near future the ARIA and B8#TI systems
can be combined after ARIA is ported into ADSS, whereby the strengthethfdystems can be
exploited.

4.1 Experiment and Results

For the purposes of comparing the three systems, a five-minute videonsequas chosen
and ground truth information extracted. The sequence was of stanefémdidn (704 by 480, 30
frames/sec) IR airborne video surveillance from the ISR Testbed colleatidris the “difficult
example” that was illustrated in the previous section (in Fig. 17). The sequetorded the
movements of a convoy of 3 targets as they undergo maneuvers throughstibéWoodside, SA,
and includes occlusions, fast camera pans, and footage of fast mmafiilgon a nearby freeway.
The ground truth consisted of a count of the number of actual movingsgpgesent in each frame
in the sequence, as judged by an image analyst. When moving targets bexhnaed or came
to a standstill in certain frames, they were not judged to be moving in thosedrarhe results for
moving targets for each system were then compared to the ground trutbtibg for each frame
the number of targets successfully located and the number of false taiggtsdoThe false alarm
rate (FAR) for the sequence was calculated by dividing the total numbatsef alarms recorded
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Figure 17: Detecting small targets in airborne surveillance. Top: frame from inputisage.
Bottom: Corresponding VMTI frame.
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Figure 18: Applying VMTI process to change detection in satellite imagery. Left andl&lidd
Input images. Right: Difference image after registration.

by the number of frames in the sequence. The probability of detection (BBralculated as the
total number of targets successfully detected divided by the total numbargetts identified in
the ground truth. The results for the three systems are shown in Table 1.

Total FAR | FAR PD Frames/s| Report/s
Industry VMTI | 446 0.0496| 0.4285| 30 8.37
ARIA 0 0.0000| 0.1913| 0.075 30
ADSS VMTI 47 0.0053| 0.5963| 27 30

Table 1: FAR, PD and timing results for the three VMTI systems

In the interests of drawing a fair comparison between the three systertasnaancessions
were made when calculating these statistics. These are detailed in the foll@etrans Broadly
speaking however, we may draw the following conclusions:

e Industry VMTI provides a very fast VMTI system on relatively cheapdware. However,
the higher processing speed appears to have come at the cost of thenBAFD rates. In
particular the current FAR would not be acceptable for a useful dedleystem.

e ARIA produces an impressive FAR rate of zero (more generally, it le&s lvecorded to
produce one false alarm in an hour of video footage), and an actef8bas the ana-
lyst only has be to be alerted once for a given moving target through thesee, before
investigating further. However, its processing time is currently too slow tacbemable.

e The ADSS VMTI produces the best PD in an acceptable processing timgthag may
be an issue (see below). Further work on the FAR rate may be necéissamnd one false
alarm in the five minute sequence), probably by tuning the parameters to diboveaPD.

4.2 Analysis
The Industry VMTI System

The focus of the Industry VMTI system was to deliver as good a VMEtay as possible
while maintaining a real time implementation, and this has come at the expense otakidgh
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and lower PD. The system has demonstrated that it is certainly possible &aldibmme VMTI,
and we are not aware of any other COTS systems capable of real time.\(MFlexample, the
Jam system, developed by Pyramid Vision Technology, requires haedxeaeleration for real
time tracking, and moreover the tracking requires initialisation by the user.ptafied below, the
ADSS VMTI system is currently capable of near real time implementation.

The system currently has a bug in that there is no synchronisation betihe@rput frames
and the tracked objects reported for each frame (due to a bug in the thiydfREG decoder). It
was therefore necessary to synchronise the reporting with the inpue$ray hand, and this was
a difficult task as the relationship was nonlinear. As such, the followingession was made for
the Industry VMTI system when computing the PD: targets that were neaigéno the targets
in the frame were counted as hits. In quite a few cases, this admitted targeteetieahlmost
certainly false positives.

Although the implementation speed for the algorithm is recorded as 30 framegqand,
or real time for this data, it should be noted that the input data is sampled afid MSLlts only
output approximately every 4 frames. The fourth column of Table 1 indita¢asumber of frames
reported on per second. The other two systems report VMTI resultgeyp rame.

The Industry VMTI has a collection of tunable parameters, but no effastmade to optimise
them for this sequence. This was due to the problem with the frame symsdion and the
difficulty extracting meaningful information from the system, and then relatirgitiiormation
to parameter settings. However, we would expect the parameters to beofatirtyal as the data
set used for this experiment was a part of a longer sequence supplieel software company
to develop the system. We should point out that the Industry VMTI system limétspleed of
moving targets that can be detected via an upper and lower threshold.edslf the system did
not detect fast moving targets consistently in the sequence.

Another point of note is that the system would sometimes erroneously maptiple hits on
the one target; these were manually corrected and did not affect the FRR oesults. Finally,
the video sequence we used did not contain passing clouds, whichpaneapthrough much of
the full sequence. The motion of passing clouds tends to increase theoFAtie findustry VMTI
system dramatically. In contrast, the ARIA system has a significant ambuaatie devoted to the
removal of such clutter so that it does not generate false alarms.

The ARIA System

The ARIA system [12] is designed to automatically flag moving targets to a waitiatyst
for subsequent action such as zooming in, or other forms of investigafioa.emphasis of the
algorithm is to have a very low FAR while providing reliable cues for movingdtstp the analyst.
To this end, the ARIA system produces a visual display and text messaggnfile as output
of its VMTI process. An important feature of the system is that it is able tadgesthe abilities
of the analyst to detect targets from evidence gradually accrued in fhleydiandidate targets
are displayed in the output images in red and over time this tends to generata tfa@smagery
that correspond to moving targets. It is very often clear from this displaythie scene contains
moving targets, readily distinguished from noise, well before an actuaingdarget is flagged
(which the system does in yellow). Importantly then, in terms of a deployddrayshis provides
a much higher degree of usefulness than its lower PD would otherwise te.dMareover, once
a target is detected, the system tends to stay locked on to it. The paramei&iokere tuned
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using 8 minutes of video, and prior testing showed that ARIA performed@gsiell on 50 minutes
of video never seen before, as it did on the 8-minute test sequencep&hational implication of
this behaviour is that once suitable parameter values are chosen, they seiiteble for as long
as the sensor footprint on the ground stays roughly the same.

As pointed out above, the ARIA system also handles obscuration of #reday passing
clouds, which broadens its usability considerably. However, this appediave contributed to its
long implementation time, which at present renders the system impractical sitrestlons. It is
hoped that the port of the system to ADSS in the C language, plus inctingpaay optimisations
possible, will improve the implementation time considerably.

In terms of the FAR and PD results, there are two other points that shouldrienmed. The
system only considers the greater central region of the image for VMIltee the rest of the
image is blanked out by a border region where there is insufficient gvbdaween comparative
frames to carry out VMTI. For the particular sequence processedyiesit that moving targets
at the side of the image were not detected and this is reflected in the PD resaily, Ehe system
tended at times to count multiple targets as one; the long trails that are gerierdtedmagery
tend to merge targets travelling in convoy. In practice, this may well not impabtecffectiveness
of the algorithm in the field, but it does contribute to a lower PD. The trails wsoifdetimes split,
resulting in multiple detections for the one target; as with Industry VMTI these wgaored and
did not affect the FAR or PD results.

The ADSS VMTI System

The ADSS VMTI system uses feature-tracking code, followed by registr and background
modelling to predict moving target candidates in the scene. A subsequavdalistic Multi
Hypothesis Tracker (PMHT) was used to remove noise and generatettbedigual targets. As
the PMHT component is a MATLAB algorithm and is not yet implemented in ADS$, Iitot
reported herein (although it will be the subject of a future report). Asbmseen from the table
of results, the results compare favourably with the other algorithms, in partieith a good PD
and an acceptable processing time (recorded on a twin processor psiraglal ADSS processing
pipeline). The result for the FAR was caused by a single false alarmtddtiecthe sequence; as
mentioned above the parameters in the system could be adjusted to reduiR thigtire expense
of a lower PD.

In this study, ADSS VMTI was run on a dual processor machine, eacb@tz AMD64
Opteron, with 8GB RAM. The KLT feature tracking module to produce fraggistration in-
formation was run on every fourth frame, and the background was mddwmtlevery frame by
interpolating the registration results. VMTI results were reported on evamge, as indicated
by the fourth column of Table 1. The ADSS processing pipeline was setithpthvee parallel
pipes, as this was found give the best timing results. A significant propasfiprocessing time
would normally be spent decoding and handling tiygegimage format, but for the purposes of
this study the file format was converted to the native ADSS format befaeepsing. Based on
these results then, we can claim a real time implementation of VMTI using hazdess than
5K AUD. It should be noted that the implementation time for the PMHT is not includetis
timing result however, as it is currently implemented in MATLAB and is not pathe ADSS
system. It is anticipated, however, that the implementation time for the PMHT in A&l
not contribute significantly to the timing results produced, as the PMHT diymems in real time
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even in MATLAB on a 1.8GHz processor (and typically an algorithm implemeiméziis one to
two orders of magnitude faster than the same algorithm in MATLAB).

There is currently an inherent lag in the ADSS VMTI algorithm caused byndesl to gen-
erate a background model before moving target candidates are pcbduche current example,
the baseline to generate the background model was 150 frames, orriisedo real applica-
tions, this lag may be unacceptable. A shorter baseline can be used (altireguire further
experimentation). On the other hand, an implementation of the system usingi§&Plsently
underway. It is expected that the significant savings in implementation time ftiteeely allow
an implementation without lag, apart from an initial boot-strapping phase.

Finally, in the case of a tracked target becoming occluded, the PMHT isndektg wait until
the target reappears while there is sufficient confidence in the measusebséng collected. In
certain cases the PMHT is able to provide tracking information through dcokig/hile the target
moves behind objects such as trees, thus producing some remarkahlegtraskilts. In terms of
comparisons to ground truth however, we find in such case that the sfiatsra result where
the ground truth has not, and these show up as false positives. Wepntkedetided to suppress
such results for the purposes of this study. The PMHT will also occabygmraduce a track that
jumps from one target to another if they pass very close together. Asdgbadjtruth information
is simply a count of the number of targets in each frame, and individualgraak not uniquely
identified (a more difficult experiment to undertake), this did not affectRAR and PD results
recorded for the system.

4.3 Summary of Comparative Analysis

Three different VMTI systems have been compared on the basis of RARPB for a five-
minute video sequence containing small moving targets. The Industry VMsTésywas found
to have the lowest performance in terms of these two measures, in partiulagthFAR level
would not be acceptable for a useful deployed system. Although thestiyddMTI system has
the fastest implementation time, it processes and outputs results for onlyxepately one in
four frames. A system such as the ADSS VMTI therefore comparesfagourably because it
is outputting VMTI results for all the available frames at a near real time fratee The caveat
with the ADSS VMTI system however is the lag in the system caused by thetoggzherate a
background model, which is a computationally demanding task that we aenfiyesorking to
overcome. The two other systems discussed herein would appear to ha@groorise for a real
time VMTI system with a FAR low enough to be useful in real applications.

5 Conclusion

In this report, a review of VMTI in ADSS was presented. The VMTI sigisgn has been de-
vised for video from moving sensors, in particular airborne urbaresilamce video. As illustrated
in this report, the paradigm of the moving sensor poses some unique prasderampared to the
stationary sensor, which we have largely solved by registering videteBaver a short temporal
window. Our solution draws on a number of algorithms from the computer visiormunity, and
combines them in a novel system. In particular, we leverage existing algodighreiopment in
shape from motiore.g, the KLT feature tracking and RANSAC algorithms, and combine it with
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established work for the static camera scenaig, background modelling and frame differenc-
ing. The solution provides positional and size information for any movingetaiig a given video
sequence, on a frame by frame basis. Moreover, given suitable pamilspecialised hardware,
the system allows a near real time solution to VMTI in ADSS.

Three different VMTI systems have been compared on the basis of RARPB for a five-
minute video sequence containing small moving targets. The Industry VMTésywas found
to have the lowest performance in terms of these two measures, in parti@iligthFAR level
would not be acceptable for a useful deployed system. Although thetiyddMTI system has
the fastest implementation time, it processes and outputs results for onlyxepately one in
four frames. A system such as the ADSS VMTI therefore comparesfagogrably because it
is outputting VMTI results for all the available frames at a near real time fra®e The caveat
with the ADSS VMTI system however is the lag in the system caused by thetaagzherate a
background model, which is a computationally demanding task that we aenfiyesorking to
overcome.

Our future work on VMTI will focus on the porting of the ARIA system into &3, with a
view to speeding up the implementation time and possibly exploiting any advantagsgstm
offers. Based on the results of the comparative analysis, it is likely thasytsiem will offer
considerably advantages in reducing the FAR, in particular in sequeritae there is moving
cloud cover. Future work will also focus on the implementation and refineofeathumber of
tracking algorithms in ADSS, including PMHT and particle filters, with a view to opiimgishese
algorithms for our VMTI system.
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